深入貫徹落實習近平總書記在深入推進東北振興座談會重要講話和我省考察時重要指示精神    以新氣象新擔當新作為推進現代化牡丹江建設  沿著習近平總書記指引方向奮力前行   開辟振興發展的新境界   堅持新發展理念 解放思想 銳意進取 深化改革 破解矛盾 以新氣象新擔當新作為推進現代化牡丹江建設  堅定信心不動搖 敢于擔當有作為 擼起袖子加油干   匯聚智慧力量 攜手推動現代化牡丹江建設   統籌推進“五位一體”總體布局,協調推進“四個全面”戰略布局,推進新時代牡丹江振興發展  
哥德巴赫猜想
閱讀次數:587    發布時間:2016年05月02日    

猜想

史上和質數有關的數學猜想中,最著名的當然就是“哥德巴赫猜想”了。
1742年6月7日,德國數學家哥德巴赫在寫給著名數學家歐拉的一封信中,提出了兩個大膽的猜想:
一、任何不小于4的偶數,都可以是兩個質數之和(如:4=2+2);
二、任何不小于7的奇數,都可以是三個質數之和(如:7=2+2+3)。
這就是數學史上著名的“哥德巴赫猜想”。顯然,第二個猜想是第一個猜想的推論。因此,只需在兩個猜想中證明一個就足夠了。

世界三大數學猜想簡述

猜想手稿猜想手稿
同年6月30日,歐拉在給哥德巴赫的回信中, 明確表示他深信哥德巴赫的這兩個猜想都是正確的定理,但是歐拉當時還無法給出證明。由于歐拉是當時歐洲最偉大的數學家,他對哥德巴赫猜想的信心,影響到了整個歐洲乃至世界數學界。從那以后,許多數學家都躍躍欲試,甚至一生都致力于證明哥德巴赫猜想。可是直到19世紀末,哥德巴赫猜想的證明也沒有任何進展。證明哥德巴赫猜想的難度,遠遠超出了人們的想象。有的數學家把哥德巴赫猜想比喻為“數學王冠上的明珠”。
我們從6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……這些具體的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一驗證了3300萬以內的所有偶數,竟然沒有一個不符合哥德巴赫猜想的。20世紀,隨著計算機技術的發展,數學家們發現哥德巴赫猜想對于更大的數依然成立。可是自然數是無限的,誰知道會不會在某一個足夠大的偶數上,突然出現哥德巴赫猜想的反例呢?于是人們逐步改變了探究問題的方式。
1900年,20世紀最偉大的數學家希爾伯特,在國際數學會議上把“哥德巴赫猜想”列為23個數學難題之一。此后,20世紀的數學家們在世界范圍內“聯手”進攻“哥德巴赫猜想”堡壘,終于取得了輝煌的成果。

世界三大數學猜想證明進程

20世紀的數學家們研究哥德巴赫猜想所采用的主要方法,是篩法、圓法、密率法和三角和法等等高深的數學方法。解決這個猜想的思路,就像“縮小包圍圈”一樣,逐步逼近最后的結果。
1920年,挪威數學家布朗證明了定理“9+9”,由此劃定了進攻“哥德巴赫猜想”的“大包圍圈”。這個“9+9”是怎么回事呢?所謂“9+9”,翻譯成數學語言就是:“任何一個足夠大的偶數,都可以表示成其它兩個數之和,而這兩個數中的每個數,都是9個奇質數之積。” 從這個“9+9”開始,全世界的數學家集中力量“縮小包圍圈”,當然最后的目標就是“1+1”了。
1924年,德國數學家雷德馬赫證明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,中國數學家王元證明了“2+3”。1962年,中國數學家潘承洞證明了“1+5”,同年又和王元合作證明了“1+4”。1965年,蘇聯數學家證明了“1+3”。
1966年,中國著名數學家陳景潤攻克了“1+2”,也就是:“任何一個足夠大的偶數,都可以表示成兩個數之和,而這兩個數中的一個就是奇質數,另一個則是兩個奇質數的積。”這個定理被世界數學界稱為“陳氏定理”。
由于陳景潤的貢獻,人類距離哥德巴赫猜想的最后結果“1+1”僅有一步之遙了。但為了實現這最后的一步,也許還要歷經一個漫長的探索過程。有許多數學家認為,要想證明“1+1”,必須通過創造新的數學方法,以往的路很可能都是走不通的。

版權所有 © 2014    牡丹江市第一中學
學校地址:牡丹江市開發區興隆街18號   校辦電話:0453-6471809
日本高清免费一本视频 日本高清不卡aⅴ免费网站 高清在线日本专区播放